Step of Proof: dec_iff_ex_bvfun
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
dec
iff
ex
bvfun
:
T
:Type,
E
:(
T
T
).
(
x
,
y
:
T
. Dec(
E
(
x
,
y
)))
(
f
:
T
T
. (
x
,
y
:
T
. (
(
x
f
y
))
E
(
x
,
y
)))
latex
by ((((Unfolds ``infix_ap so_apply`` 0)
CollapseTHENM (GenRepD))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
E
:
T
T
C1:
3.
x
,
y
:
T
. Dec(
E
(
x
,
y
))
C1:
f
:
T
T
. (
x
,
y
:
T
. (
(
f
(
x
,
y
)))
(
E
(
x
,
y
)))
C
2
:
C2:
1.
T
: Type
C2:
2.
E
:
T
T
C2:
3.
f
:
T
T
. (
x
,
y
:
T
. (
(
f
(
x
,
y
)))
(
E
(
x
,
y
)))
C2:
4.
x
:
T
C2:
5.
y
:
T
C2:
Dec(
E
(
x
,
y
))
C
.
Definitions
t
T
,
P
Q
,
P
Q
,
P
&
Q
,
x
f
y
,
x
:
A
.
B
(
x
)
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
assert
wf
,
iff
wf
,
bool
wf
,
decidable
wf
origin